原著論文
- Ogura Y., Sun X., Zhang Z., Kawata K., Wu J., Matsubara R., Nakanishi-Ozeki
A., Taniue K., Onoguchi-Mizutani R., Adachi S., Nakayama K., Goda N. Akimitsu N. Fragile X mental retardation protein regulates glycolytic
gene expression under chronic hypoxia in HCT116 cells. Sci. Rep.(2025) in press
- Sueoka S., Kai A., Kobayashi Y., Ito M , Sasada S., Emi A., Gotoh N., Arihiro
K., Nakayama K., Okada M., Kadoya T. Diversity of ER-positive and HER2-negative breast
cancer stem cells attained using selective culture techniques. Sci. Rep., 15:8257, (2025)
doi: 10.1038/s41598-025-90689-7.
- Wakisaka R., Yamaki H., Kono M., Inoue T., Sato R., Komatsuda H., Ohara
K., Kosaka A., Ohkuri T., Nagato T., Kishibe K., Nakayama K., Kobayashi H., Kumai T., Takahara M. Hypoxia-Targeted Immunotherapy with
PD-1 Blockade in Head and Neck Cancer. Cancers 16:3013, (2024)
doi: 10.3390/cancers16173013.
- Nakayama K.*, Shachar S., Finn EH., Sato H., Hirakawa A. and Misteli T.* Large-scale
mapping of positional changes of hypoxia-responsive genes upon activation.
Mol. Biol. Cell, 33:ar72, (2022)
doi: 10.1091/mbc.E21-11-0593.
- Amioka A., Kadoya T., Sueoka S., Kobayashi Y., Sasada S., Emi A., Masumoto
N., Ito M., Nakayama K., Okada M. Effect of Wnt5a on drug resistance in estrogen receptor-positive
breast cancer. Breast Cancer, 28,1062-1071, (2021) doi: 10.1007/s12282-021-01241-0
- Eguchi K., and Nakayama K.* Prolonged hypoxia decreases nuclear pyruvate dehydrogenase complex and
regulates the gene expression. Biochem Biophys Res Commun., 520, 128-135, (2019)
- Yonashiro R., Eguchi K., Wake M., Takeda N., and Nakayama K.* Pyruvate dehydrogenase PDH-E1β is downregulated under prolonged hypoxic
conditions and controls tumor progression by altering the metabolic status
of cancer cells. Cancer Res., 78, 1592-1603, (2018)
- Gudla PR., Nakayama K., Pegoraro G., Misteli T. SpotLearn: Convolutional Neural Network for
Detection of Fluorescence In Situ Hybridization (FISH) Signals in High-Throughput
Imaging Approaches. Cold Spring Harb Symp Quant Biol., 82, 57-70, (2017)
- Kikuchi D., Tanimoto K., and Nakayama K.* CREB is activated by ER stress and modulates the unfolded protein response
by regulating the expression of IRE1α and PERK. Biochem. Biophys. Res. Commun., 469, 243-250, (2016)
- Katsuta E, Tanaka S, Mogushi K, Shimada S, Akiyama Y, Aihara A, Matsumura
S, Mitsunori Y, Ban D, Ochiai T, Kudo A, Fukamachi H, Tanaka H, Nakayama K., Arii S, Tanabe M. CD73 as a therapeutic target for pancreatic neuroendocrine
tumor stem cells. Int. J. Oncol., 48, 657-669, (2016)
- Kikuchi D., Minamishima YA., and Nakayama K.* Prolyl-hydroxylase PHD3 interacts with pyruvate dehydrogenase (PDH)-E1beta
and regulates the cellular PDH activity. Biochem. Biophys. Res. Commun. 451, 288-294, (2014)
- Nakayama K.* CREB and NF-kB are activated during prolonged hypoxia and cooperatively
regulate the induction of matrix metalloproteinase MMP1. J. Biol. Chem. 288, 22584-22595, (2013)
- Arima N., Uchida Y., Yu R., Nakayama K., Nishina H. Acetylcholine receptors regulate gene expression that is
essential for primitive streak formation in murine embryoid bodies. Biochem. Biophys. Res. Commun. 435, 447-453, (2013)
- Muramatsu S., Tanaka S., Mogushi K., Adikrisna R., Aihara A., Ban D., Ochiai
T., Irie T., Kudo A., Nakamura N., Nakayama K., Tanaka H., Yamaoka S., Arii S. Visualization of stem cell features in
human hepatocellular carcinoma enlightened in vivo significance of tumor-host
interaction and clinical implication. Hepatology 58, 218-228, (2013)
- Sato M., Sakota M., and Nakayama K.* Human PRP19 interacts with prolyl-hydroxylase PHD3 and inhibits cell
death in hypoxia. Exp. Cell Res. 318, 2871-2882, (2010)
- Qi J., Nakayama K., Cardiff R.D., Borowsky A.D., Kaul K., Williams R., Krajewski S., Mercola
D., Carpenter P.M., Bowtell D., and Ronai A.Z. * Siah2-depenent concerted
activity of HIF&FoxA2 regulates formation of neuroendocrine phenotype
and neuroendocrine prostate tumors. Cancer Cell 18, 23-38, (2010).
- Qi J.#, Nakayama K. # (# equal contribution) , Gaitonde S., Goydos J.S., Krajewski S., Eroshkin
A., Bar-Sagi D, Bowtell D.D. and Ronai Z. The ubiquitin ligase Siah2 regulates
tumorigenesis and metastasis by HIF-dependent and -independent pathways.
Proc. Natl. Acad. Sci. U. S. A. 105, 16713-16718, (2008).
- Nakayama K., Gazdoiu S., Abraham R., Pan Z.Q. and Ronai Z. Hypoxia-induced assembly
of prolyl-hydroxylase, PHD3 into complexes: implications for its activity
and susceptibility for degradation by the E3 ligase Siah2. Biochem. J. 401, 217-226, (2007).
- Khurana A., Nakayama K., Davis R., Williams S., Mustellin T., Ronai Z. Regulation of the RING
finger E3 ligase Siah2 by p38 MAPK. J. Biol.Chem. 281, 35316-35326, (2006).
- Nakayama K., Frew I.J., Hagensen M., Skals M., Habelhah H., Bhoumik A., Kadoya T.,
Erdjument-Bromage H., Tempst P., Frappell P.B., Bowtell D.D., Ronai Z.
Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance,
and modulates physiological responses to hypoxia. Cell 117, 941-952, (2004).
- Didier C., Broday L., Bhoumik A., Israeli S., Takahashi S., Nakayama K., Thomas S.M., Turner C.E., Henderson S., Sabe H., Ronai Z. RNF5, a RING
finger protein that regulates cell motility by targeting paxillin ubiquitination
and altered localization. Mol. Cell Biol. 15, 5331-5345, (2003).
- Nakayama K., Kim K. W., and Miyajima A. A novel nuclear zinc finger protein EZI enhances
nuclear retention and transactivation of STAT3. EMBO J.21, 6174-6184, (2002).
- Nakayama K., Hara T., Hibi M., Hirano T.and Miyajima A. The Novel Oncostatin M-Inducible
Gene OIG37 Forms a Gene Family with MyD118 and GADD45 and Negatively Regulates
Cell Growth. J. Biol.Chem. 274, 24766-24772, (1999).
欧文総説
- Nakayama K.* and Kataoka N.* Regulation of Gene Expression under Hypoxic Conditions.
Int. J. Mol. Sci. 20, E3278(1-15), (2019).
- Nakayama K., Nangaku M. Hypoxia-inducible factor and signal transducer and activators
of transcription 3: two central regulators meet to regulate kidney pathophysiology.
Clin. Exp. Pharmacol. Physiol. 40, 251-252, (2013).
- Nakayama K. Growth and progression of melanoma and non-melanoma skin cancers regulated
by ubiquitination. Pigment Cell Melanoma Res. 23, 338-351, (2010).
- Nakayama K. Cellular signal transduction of the hypoxia response. J. Biochem. 146, 757-765, (2009).
- Nakayama K., Qi J., Ronai Z. The ubiquitin ligase Siah2 and the hypoxia response.
Mol. Cancer Res. 7, 443-451, (2009).
- Nakayama K., Ronai Z. The role of ubiquitin proteasome pathway in the regulation
of the cellular hypoxia. Protein degradation and the ubiquitin proteasome
system Vol. 3 (Wiley-VCH) (2006).
- Nakayama K., Ronai Z. Siah: new players in the cellular response to hypoxia. Cell Cycle 11, 1345-1347, (2004).
- Miyajima A., Hara T., Nakayama K. Hematopoietic Signal Transduction. Hematopoiesis (Oxford University Press), (2001).
和文総説
- 中山 恒 (2016) 低酸素センサー 炎症と免疫 Vol.24(4) 271-276,(先端医学社)
- 中山 恒, 合田 亘人 (2012) 多彩な生命現象に働く低酸素応答システム 実験医学5月号 Vol.30(8) 1246-1251,(羊土社)
- 中山 恒 (2012) PHDによって制御される低酸素応答シグナル HIF経路とHIF非依存的経路の役割 実験医学5月号 Vol.30(8) 1283-1288,(羊土社)
- 中山 恒 (2011) がんにおける低酸素応答シグナル伝達 実験医学増刊号 がん幹細胞 Vol.29(20) 141-147,(羊土社)
- 中山 恒 (2011) 低酸素応答におけるエネルギー代謝調節The Lung Perspectives Vol.19 63-67,(メディカルレビュー社)
- 中山 恒, Ze’ev Ronai(2006)低酸素応答におけるユビキチン系の働き ユビキチン-プロテアソーム系とオートファジー 蛋白質・核酸・酵素 Vol.51(10),(共立出版)
- 中山 恒, Ze’ev Ronai(2004)低酸素応答におけるユビキチンリガーゼSiah2によるプロリン水酸化酵素PHDの制御 実験医学 Vol.22(16),(羊土社)